

N: DoP POLYBAIE OFPE ind A

DECLARATION OF PERFORMANCE OF SMOKE AND HEAT CONTROL SYSTEMS

Unique identification code of the product-type:

Polybaie OFPE

2. Type, batch or serial number or any other element allowing identification of the construction product as required under Article 11 paragraph 4: Information given on the tracking label:

Order confirmation Number + Product Number + Date of production

- 3. Intended use or uses of the construction product, in accordance with the applicable harmonised technical specification, as foreseen by the manufacturer:
 - **3.1** *Product description:* Natural smoke and heat exhaust ventilator with a single casement, for wall installation on a horizontal axis in a bottom or top hung opening outside configuration, or on a vertical axis side hung opening outside style. The infill can be in cellular polycarbonate, in glass or insulated double skin aluminium (thermally or acoustically).
 - 3.2 Installation and implementation conditions in accordance with the certified performances
 - Wall installation (±30°)
 - Dimensional range (Throat dimensions)

	Bottom or top hunged			Side hunged		
				With:	If Lpa ≥ 2 x Hpa	
				If Lpa ≥ 3 x Hpa		
	Minimum	Maximum		Minimum	Maximum	
LPA (mm)	300	2400	1600	600	2400	1800
HPA (mm)	300	1200	1600	300	800	900
	. ,	Minimum LPA (mm) 300	Minimum Maxir LPA (mm) 300 2400	Minimum Maximum LPA (mm) 300 2400 1600	Bottom or top hunged With : Minimum Maximum Minimum LPA (mm) 300 2400 1600 600	Bottom or top hunged With : If Lpa ≥ If L

3.3 Mode of operation: Pneumatical opening only

Service pressure 6 to 20 bars

(Micro-cylinder volume: 0.12Nl under 10 bars)

3.4 Possible options :

Open / Close position switches

Thermal device release (according to the current standard).

4. Name, registered trade name or trade mark , in conformity with article 11, paragraph 5:

Company name: SOUCHIER – BOULLET SAS Parc Segro – 42 rue de Lamirault CS 20762 77090 COLLEGIEN France

<u>Production unit</u>: SOUCHIER-BOULLET SAS 11 rue du 47^{ème} R.A. 70400 HERICOURT

France

7. System or systems of assessment and verification of constancy of performance of the construction product as set out in Annex V:

The notified body **TÜV Rheinland N° 0336** performed the determination of the product type on the basis of type testing, type calculation of the product, the initial inspection of the manufacturing plant and the factory production control and the continuous surveillance, assessment and evaluation of the factory production control under system 1 and issued the certificate of constancy of performance N°

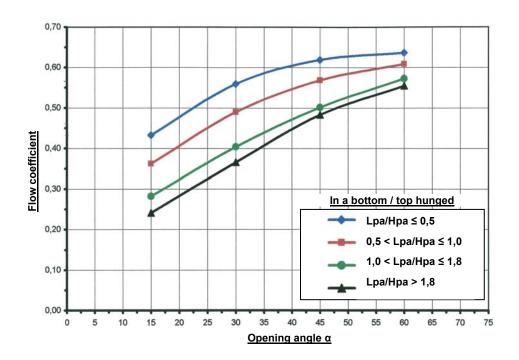
CE Certificate N°0336 - CPR - 89208433.

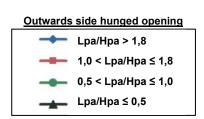
9. <u>Declared performances:</u>

	Essential characteristics	Performance			
Nomir	Nominal activation conditions / sensitivity, as:				
	Initiation device	present			
	Opening mechanism	present			
	Inputs and outputs	present			
Respo	nse delay (response time), as:				
	Reliability				
	Opening under (snow, wind) load	≤ 60 s			
	Low ambient temperature				
	Fire Performance				
Opera	tional reliability, as:				
	Reliability	Re 1000, Type A			
Effect	iveness of smoke/hot gas extraction, as:				
	Aerodynamic free area (see diagrams)	$A_a = A_v^* \times C_v^{**}$			
Performance parameters under fire conditions, as:					
	Resistance to heat	B ₃₀₀ 30			
	Mechanical stability	ΔA _{throat} < 10 %			
	Reaction to fire				
	Insulated panel or gla	A1			
	Polycarbona	te B-s1;d0			
Performance under environnemental conditions, as:					
	Opening under load	SLNPD			
	Low ambient temperature	T(00)			
	Stability under wind load	WL 1500			
	Resistance to wind-induced vibration (where included)	ω_0 : > 10Hz, δ : >0,1			
	Resistance to heat	B ₃₀₀ 30			
Durab	ility, as:				
	Response delay (response time)	≤ 60 s			
	Operational reliability	Re 1000			
	Performance parameters under fire conditions	\leq 60 s; $\Delta A_{throat} <$ 10 %			

Calculation of the free aerodynamic surface :

 $A_a = A_v \times C_v^{**}$ $A_v = Lpa \times Hpa$





N: DoP POLYBAIE OFPE_ind A

DECLARATION OF PERFORMANCE OF SMOKE AND HEAT CONTROL SYSTEMS

** Cv : Calculation of flow coefficient :

10. The performance of the product identified in points 1 et 2 is in conformity with the declared performance in point 9. This declaration of performance is issued under the sole responsibility of the manufacturer identified in point 4.

Signed for and on behalf of the manufacturer by: David Maillart – R&D Manager

The 20/04/2023 In Collégien

